NFPA CSST PROJECT -LIGHTNING & ELECTRICAL ARC DAMAGE TO CSST

Michael F. Stringfellow Chief Scientist PowerCET Corporation

Electrical Arc Damage to CSST

Hole size proportional to energy dissipated

- Power proportional to product of current and voltage
- Voltage at arc/metal interface approximately constant
- Energy proportional to time integral of current (charge)

■ For CSST of 0.25mm wall thickness

- Hole area in sq mm ~ 3 x charge in coulombs
- 2mm diameter ~ 1 coulomb

Direct Lightning Strikes

- Most often to ungrounded metallic roof penetrations
 - Melting on metal components most liable to be struck
 - Chimney flues
 - Heater vents
 - Mechanical damage to non-conductors
- Current flows through all available paths to earth
 - Electrical, telephone and cable TV lines
 - Structural metalwork, metal-foil-clad insulation
 - Water, HVAC and gas pipes
 - Model simulation
- May also initiate power system faults

Ungrounded Roof Penetrations

- Chimney caps and flues
- Furnace vents
- TV antennas
- Satellite dishes


Indirect Lightning Strikes

- Lightning-related event with no evidence of direct strike to structure
- Evidence of nearby strike
 - Damage to trees or non-metallic objects
 - Melting on nearby metallic objects
 - Power line damage

Lightning Location Data

- Not precise enough to locate exact point of strike
 - Location done by radio location of lower channel ~ 500m errors
- Will locate many (not all) strokes of multistroke flash
- May identify separate channels

Direct Strike Currents

Negative flashes:

- One or more impulsive return strokes
 30 kA 10x100 µs (5 coulomb impulse charge)
 One continuing current in some flashes
 - 100 A, 100ms (10C)
- Positive flashes
 - One return stroke
 - □ 100 kA 30x300 μs (100C)

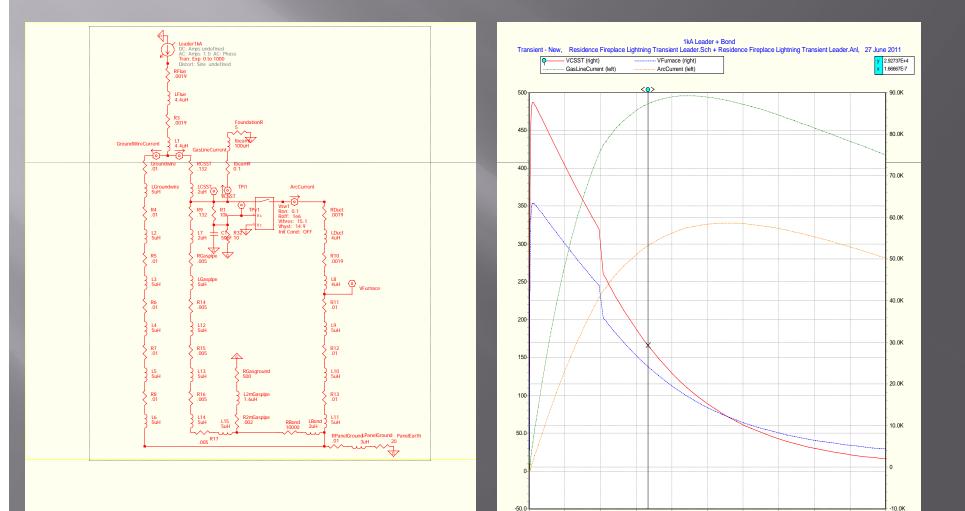
Indirect Strike Currents

- Unconnected leader to metallic roof penetrations
 - Short duration (µs), high voltage (>100 kV), low energy and charge (~0.001C)
- Electromagnetically-induced surges
 - Medium duration (10 µs), high voltage, low energy and charge (~0.001C)
- Surges on incoming services
 - Ground-potential rise
 - Longer duration (100 μs), medium voltages (10 kV), moderate energy and charge (~0.01C)

Unconnected Lightning Leaders

Evidence for Power System Faults

- Multiple adjacent holes of similar size
 - Frequently reported from indirect lightning
 - Adjacent arcs unlikely to exist concurrently
 - Likely serial from multiple-stroke lightning flash
 - Power system only source likely to deliver similar energy in successive arcs
- Computer simulation



Two CSST Arc Damage Mechanisms

- Direct Lightning Strikes
 - Fraction of lightning current flows onto CSST through arc
 - Return stroke
 - Continuing current
 - Sufficient current magnitude and duration to cause observed damage

- Indirect Lightning Strikes
 - Indirect lightning currents too small and too short duration to damage CSST
 - Indirect overvoltage (> 50 kV) causes multiple flashovers, including AC power system
 - AC power fault current flows through arc
 - Sufficient current magnitude and duration to cause observed damage
 - Power fault currents also likely cause of many fires not involving gas pipes

SPICE Simulation (Leader Current)

Ó

50.0n

100n

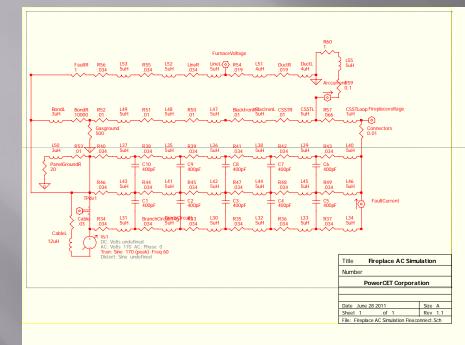
150n

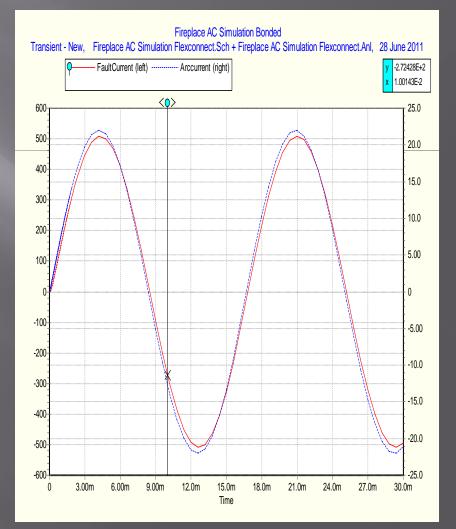
200n

250n

Time

300n


350n


400n

450n

500n

SPICE Simulation (AC Fault Current)

Solutions to Gas Pipe Damage

Direct Strikes

- Install at least minimal lightning protection system
- Bond all metal services to main building and power system ground
 - Including gas pipes on building side of service
 - All gas pipes, not just CSST!

Indirect Strikes

- Ground ungrounded roof penetrations
 - Preferably through lightning protection system
- Bond all metal services to main building and power system ground
 - Including gas pipes on building side of service
- Evaluate benefit of earth-leakage relays on AC power system

Questions

- Should there be a mandated minimum requirement for lightning protection in vulnerable structures, including residences?
- Do we need to define lightning withstand requirements for services in unprotected structures? (Proceed with caution!)
 - Electrical lines & equipment
 - Gas pipes & appliances
 - Telephone & cable wires & equipment
 - Water pipes

Further Work

Include ALL gas pipe systems in study

- Compare and contrast type and incidence of damage to rigid pipe systems to that of CSST
- Long reported lightning damage to rigid pipe systems not investigated or understood
 - Joints, flex connectors or appliance valves?
- Identify relative importance of direct and indirect strikes for gas and electrical fires
 - Computer simulation very helpful
 - Solutions may be different
- Would replacing CSST by rigid pipes improve overall fire incidence?
 - Leaks & breaks much more significant cause of fires than lightning